1Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
2Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, TianjinInstitute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
3University of Chinese Academy of Sciences, Beijing 100049, China
4These authors contributed equally to this work
Received 11 Apr 2024 |
Accepted 10 Jun 2024 |
Published 30 Jul 2024 |
Terpenoids of substantial industrial interest are mainly obtained through direct extraction from plant sources. Recently, microbial cell factories or in vitro enzymatic biosystems have emerged as promising alternatives for terpenoid production. Here, we report a route for the synthesis of α-farnesene based on an in vitro enzyme cascade reaction using methanol as an inexpensive and renewable C1 substrate. Thirteen biocatalytic reactions divided into 2 modules were optimized and coupled to achieve methanol-to-α-farnesene conversion via integration with natural thylakoid membranes as a green energy engine. This in vitro enzymatic biosystem driven by light enabled the production of 1.43 and 2.40 mg liter−1 α-farnesene using methanol and the intermediate glycolaldehyde as substrates, respectively. This work could provide a promising strategy for developing light-powered in vitro biosynthetic platforms to produce more natural compounds synthesized from C1 substrates.